The dilution-resistant effect of dark particles on cosmic neutrinos

Xun-Jie Xu / 许勋杰

Institute of High Energy Physics (IHEP)

Chinese Academy of Sciences (CAS)

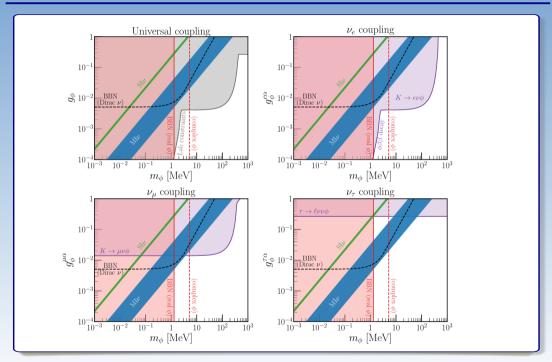
https://xunjiexu.github.io/

Everyone is talking about ν physics \Rightarrow new physics ...

If neutrinos interact with a new particle, how can we probe it?

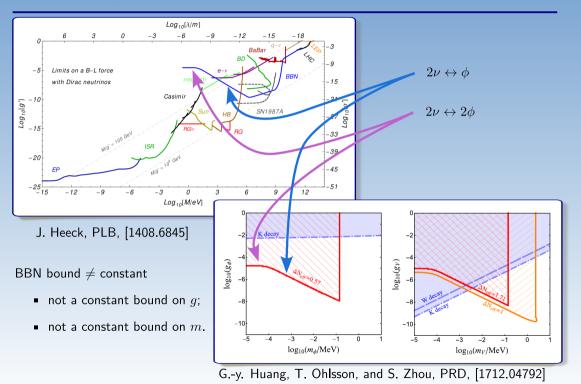
Simplest cases:

e.g. Majoron



N. Blinov, K. Kelly, G. Krnjaic, S. McDermott, PRL [1905.02727]

Constraints on $\nu\nu\phi$ or $\nu\nu Z'$



Constraints on $\nu\nu\phi$ or $\nu\nu Z'$

processes	flavor dependence	bounds	
π^{\pm} decay	$ u_e$	$y < 1.3 \times 10^{-2}$	
K^{\pm} decay	$ u_e, u_\mu$	$y < 1.4 \times 10^{-2} \ (\nu_e) \ \text{or} < 3 \times 10^{-3} \ (\nu_\mu)$	
$\beta\beta$ decay	$ u_e$	$y < 3.4 \times 10^{-5}$	
Z decay	all flavors	y < 0.3	
$_{ m BBN}$	all flavors	$y < 4.6 \times 10^{-6}$	
CMB	all flavors	$y < 8.2 \times 10^{-7}$	
SN1987A (energy loss)	all flavors	$y < 3 \times 10^{-7} \text{ or } 2 \times 10^{-5} < y < 3 \times 10^{-4}$	
SN1987A (deleptonization)	$ u_e$	$y < 2 \times 10^{-6}$	

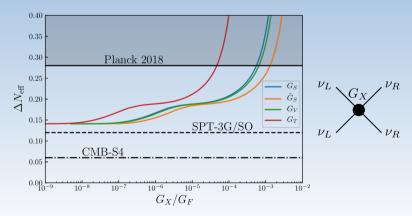
Smirnov, XJX, JHEP [2201.00939]

Among known bounds on very light ν -philic ϕ :

- CMB, SN, BBN are the strongest
 - ... but SN bounds ...
- Lab. bounds are often flavor-dependent (except for Z decay)

Cosmological constraints on light particles

- Why so stringent?
 - so stringent that many people don't even dare to go below MeV.
- robust?
 - yes! simply estimate the entropy (see next slides)
 - even Dirac neutrinos can be ruled out, if ν_R -SM int. is not too weak.



Luo, Rodejohann, XJX, JCAP, [2005.01629]

Simple exercise: let's derive $T_{\nu}=\left(\frac{4}{11}\right)^{1/3}T_{\gamma}$, 1.9K vs. 2.7K

- just a game of entropy conservation
- let's derive it on a black board ...

$$-\ T_{\gamma 1}^3\left(2+4\times \tfrac{7}{8}\right) \to T_{\gamma 2}^3\left(2+0\right),\ T_{\nu 1}^3\left(6\times \tfrac{7}{8}\right) \to T_{\nu 2}^3\left(6\times \tfrac{7}{8}\right)$$

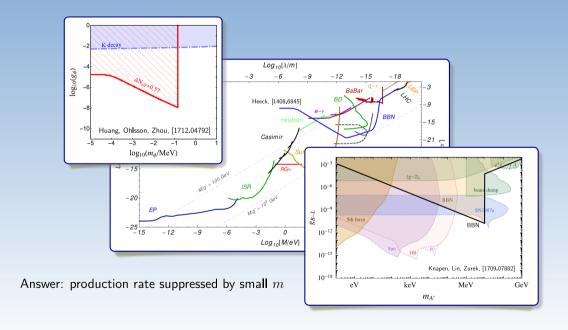
lacksquare ..., which is why $N_{
m eff}$ is defined as

$$N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \left(\frac{\rho_{\text{rad}} - \rho_{\gamma}}{\rho_{\gamma}} \right)$$

- SM prediction: $N_{\rm eff}=3.045$; Planck 2018: $N_{\rm eff}=2.99\pm0.17$;
- Any new entropy injection $\Rightarrow \Delta N_{
 m eff}$

Now, back to those CMB/BBN bounds on $\nu\nu\phi$ or $\nu\nu Z'$...

Why smaller $m \Rightarrow$ weaker bounds?



... production rate suppressed by small m, why?

Simplest process for ϕ production:

- what if $m_{\phi} \leq m_{\nu}$?
 - kinematically forbidden (at least ϕ cannot decay to 2ν)
 - if decay is forbidden, inverse decay is also forbidden
- what if $m_{\nu}=0$ and $m_{\phi}\to 0$?
 - must be suppressed by m_{ϕ}

Quantitatively ...

$$rac{dn_{\phi}}{dt} + 3Hn_{\phi} = C_{\mathrm{prod.}} - C_{\mathrm{depl.}},$$

$$C_{\mathrm{prod.}} = rac{y^2 m_{\phi}^3}{32\pi^3} T_{\nu} K_1 \left(rac{m_{\phi}}{T_{\nu}}
ight)$$

indeed suppressed by m_ϕ

$$\frac{dn_{\phi}}{dt} + 3Hn_{\phi} = C_{\text{prod.}} - C_{\text{depl.}},$$

$$C_{\text{prod.}} = \frac{y^2 m_{\phi}^3}{32\pi^3} T_{\nu} K_1 \left(\frac{m_{\phi}}{T_{\nu}}\right) \sim \frac{y^2}{32\pi^3} \times \begin{cases} m_{\phi}^2 T_{\nu}^2 & (T_{\nu} \gg m_{\phi}) \\ \cdots e^{-m_{\phi}/T} & (T_{\nu} \gg m_{\phi}) \end{cases}$$

Define

$$\Gamma \equiv \frac{C_{\rm prod.}}{n_{\phi}^{\rm eq}}$$

Meaning: the probability of a ϕ particle being produced in a volume ($\supset 1\nu$) per unit time

$$\mbox{Behavior:} \quad \Gamma \approx \frac{y^2 m_\phi}{32\pi} \begin{cases} m_\phi/T_\nu & (T_\nu \gg m_\phi) \\ 1 & (T_\nu \ll m_\phi) \end{cases}$$

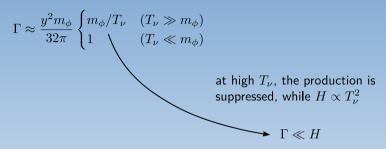
The well-known criterion

In equilibrium: $H \ll \Gamma$ Not in Equilibrium: $H \gg \Gamma$

Fast reaction vs. fast expansion

Question: when is ϕ in equilibrium with ν ?

Question: when is ϕ in equilibrium with ν ?



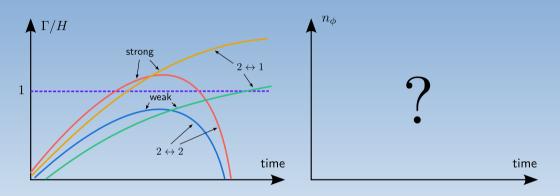
Physically, what does the suppression mean?

- again, think about the inverse process: if $T_{
 u}$ is very high, ϕ moves very rapidly
 - ultra-relativistic particles can hardly decay if E/m is too high
- slow decay ⇔ slow inverse decay

Moreover, written in term of the decay rate (at rest) Γ_0 :

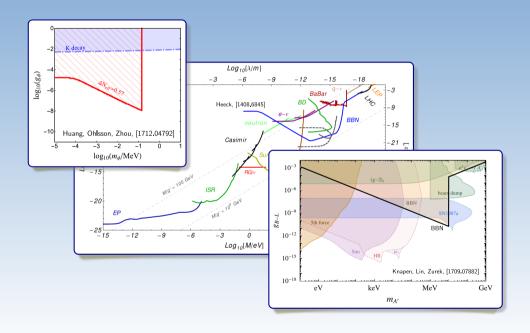
$$\Gamma \sim \Gamma_0 \begin{cases} m_\phi/T_\nu & (T_\nu \gg m_\phi) \\ 1 & (T_\nu \ll m_\phi) \end{cases} \qquad \text{essentially just the relativistic decay rate!}$$

 $\Gamma/H \ll 1$ at high T is quite common ...



A biased citation:

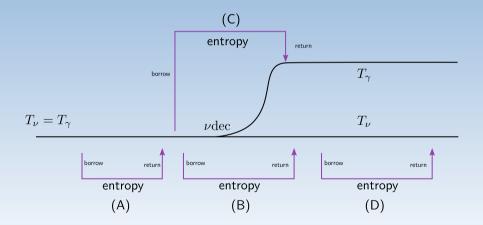
Now, can you understand the results in these papers?



... end of the pedagogical introduction.

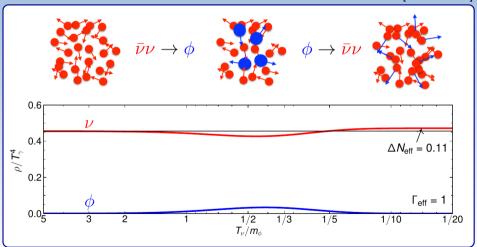
Let's start to explore an interesting effect ...

- In the sub-MeV regime, $m_{\phi} \downarrow \Rightarrow n_{\phi}@\nu \mathrm{dec} \downarrow \Rightarrow$ entropy injection $\downarrow \Rightarrow \Delta N_{\mathrm{eff}} \downarrow$
- What if $n_{\phi}@\nu \text{dec} = 0$? corresponding to (D) below
 - $\Rightarrow \Delta N_{\text{eff}} = 0$?
 - No! dilution-resistant effect (the subject of this talk)



- $N_{
 m eff}$ is changed even if the entire process is after $u_{
 m dec}$;
- already noticed previously

M. Escudero, JCAP, [2001.04466].



Let's think about the Boltzmann equations:

$$\frac{dn}{dt} + 3Hn = C_{\text{prod.}}^{(n)} - C_{\text{depl.}}^{(n)},$$

$$\frac{d\rho}{dt} + 3H\left(\rho + P\right) = C_{\text{prod.}}^{(\rho)} - C_{\text{depl.}}^{(\rho)}, \qquad (2)$$

Eq. (1) \Rightarrow

$$\frac{d\left(na^{3}\right)}{da} = \frac{a^{2}}{H} \left[C_{\text{prod.}}^{(n)} - C_{\text{depl.}}^{(n)} \right].$$

Eq. (2)
$$\Rightarrow$$

$$\frac{d\left(\rho a^{4}\right)}{da} = \frac{a^{3}}{H} \left[C_{\text{prod.}}^{(\rho)} - C_{\text{depl.}}^{(\rho)} \right] + a^{3} \left(\rho - 3P\right). \tag{4}$$

Sum eqs for ν and ϕ (or Z') \Rightarrow

$$\frac{d\left(n_{\nu}a^{3}\right)}{da} + \frac{d\left(n_{Z'}a^{3}\right)}{da} = 0.$$
 (5)

$$\frac{d\left(\rho_{\nu}a^{4}\right)}{da} + \frac{d\left(\rho_{Z'}a^{4}\right)}{da} = a^{3}\left(\rho_{Z'} - 3P_{Z'}\right). \tag{6}$$

$$H = a^{-1} \frac{da}{dt}$$

$$\frac{dn}{dt} + 3Hn = a^{-3} \frac{d(na^3)}{dt}$$

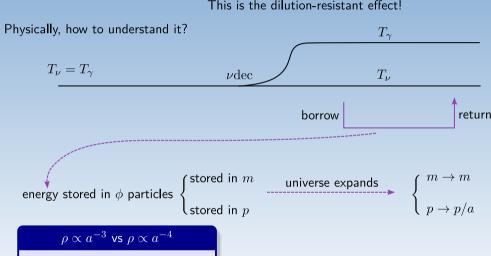
- ${\color{red} \bullet}$ energy in ρa^4 not conserved
- if $\rho > 3P$, energy in $\rho a^4 \uparrow$
- for γ & ν :

-
$$\rho = 3P$$

- energy conserv.
- $\qquad \qquad \text{for } \phi \text{ with } m \neq 0 \\$
 - $-\rho > 3I$

$$\frac{d\left(\rho_{\text{total}}a^{4}\right)}{da} = a^{3}\left(\rho_{Z'} - 3P_{Z'}\right).$$

This is the dilution-resistant effect!



If you store energy in m, it will be less diluted by expansion

乱世买黄金 (buy gold during inflation)

Cosmological investment: 乱世买黄金 (buy gold during inflation)

energy stored in
$$\phi$$
 particles
$$\begin{cases} \text{stored in } m & \text{universe expands} \\ \text{stored in } p \end{cases} \qquad \begin{cases} m \to m \\ p \to p/a \end{cases}$$

Profit:
$$\Delta\left(\rho_{\rm total}a^4\right) = \int a^3\left(\rho - 3P\right)da \propto \int m \times \boxed{\cdots} da$$

Cosmological investment: 乱世买黄金 (buy gold during inflation)

How to compute the profit?

Method 1: Purely numeric. Solve all Boltzmann equations numerically to obtain the final $ho_{
u}$

Method 2: Analytically estimate the integral

Profit:
$$\Delta \left(\rho_{\text{total}} a^4 \right) = \int a^3 \left(\rho - 3P \right) da \propto \int m \times \overline{\cdots} da$$

Method 3: Conservation of na^3 , sa^3 and ρa^4 in their respective valid ranges

- Conservation of particle numbers (na^3) .
 - always conserved if only $2\leftrightarrow 1$ or $2\to 2$ is present.
- Conservation of energy (ρa^4) .
 - conserved if all particles are ultra-relativistic.
- Conservation of entropy (sa^3) .
 - ... a subtle issue

Three methods ⇒ same results [S.-P. Li, XJX, JCAP, 2307.13967]

Method 3: Conservation of na^3 , sa^3 and ρa^4 in their respective valid ranges

$$n_1 a_1^3 = n_2 a_2^3 = n_3 a_3^3 \,, \tag{1}$$

$$\rho_1 a_1^4 = \rho_2 a_2^4 \,, \tag{}$$

$$s_2 a_2^3 = s_3 a_3^3 \,, \tag{3}$$

Eqs.
$$(1)+(2) \Rightarrow$$

$$n_{Z'}/n_{
u}$$
 $T\sim m$ $e^{-m/T}$ suppr. $time$ 1 2 3

$$\begin{split} n_{\rm FD}(T_1,0)a_1^3 &= \left[n_{\rm FD}(T_2,\mu_2) + n_{\rm BE}(T_2,2\mu_2)\right]a_2^3\,, \\ 2\rho_{\rm FD}(T_1,0)a_1^4 &= \left[2\rho_{\rm FD}(T_2,\mu_2) + \rho_{\rm BE}(T_2,2\mu_2)\right]a_2^4\,, \end{split}$$

$$\begin{split} n_{\rm FD/BE}(T,\mu) &\equiv \int \frac{1}{e^{(p-\mu)/T} \pm 1} \frac{d^3p}{\left(2\pi\right)^3} = \mp \frac{T^3}{\pi^2} \mathrm{Li}_3(\mp e^{\mu/T}), \\ \rho_{\rm FD/BE}(T,\mu) &\equiv \int \frac{p}{e^{(p-\mu)/T} \pm 1} \frac{d^3p}{\left(2\pi\right)^3} = \mp \frac{3T^4}{\pi^2} \mathrm{Li}_4(\mp e^{\mu/T}). \end{split}$$

$$\cdots T_1^3 \operatorname{Li}(\cdots \mu_1 \cdots T_1) = \cdots T_2^3 \operatorname{Li}(\cdots \mu_2 \cdots T_2)$$
$$\cdots T_1^3 \operatorname{Li}(\cdots \mu_1 \cdots T_1) = \cdots T_2^3 \operatorname{Li}(\cdots \mu_2 \cdots T_2)$$

Li (polylog) functions are like log functions

— e.g. how to solve $x^2 \log(x) = 1$?

Solution:
$$(T_2, \ \mu_2) = (1.208, -1.166) T_1 \frac{a_1}{a_2}$$

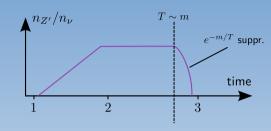
Method 3: Conservation of na^3 , sa^3 and ρa^4 in their respective valid ranges

From eqs connecting "1" to "2",

Solution:
$$(T_2, \ \mu_2) = (1.208, -1.166) T_1 \frac{a_1}{a_2}$$

From eqs connecting "2" to "3", similar:

Solution:
$$(T_3, \ \mu_3) = (1.092, -0.3133) \, T_1 \frac{a_1}{a_3}$$



$$\Delta N_{\text{eff}} = 3 \left[\frac{\rho_{\nu 3} a_3^4}{\rho_{\nu 1} a_1^4} - 1 \right] = 0.242.$$

for the vector case (Z')

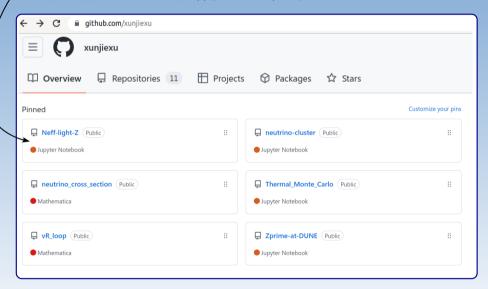
More generally, ...

	scalar	vector
Post- ν DEC equilibrium	$\Delta N_{\mathrm{eff}} = 0.118$	$\Delta N_{\mathrm{eff}} = 0.242$
$Pre-\nu DEC$ equilibrium	$\Delta N_{\rm eff} = 0.794$	$\Delta N_{\mathrm{eff}} = 2.53$
Pre- ν DEC equilibrium (strong couplings)	$\Delta N_{\rm eff} = 0.785$	$\Delta N_{\mathrm{eff}} = 2.48$

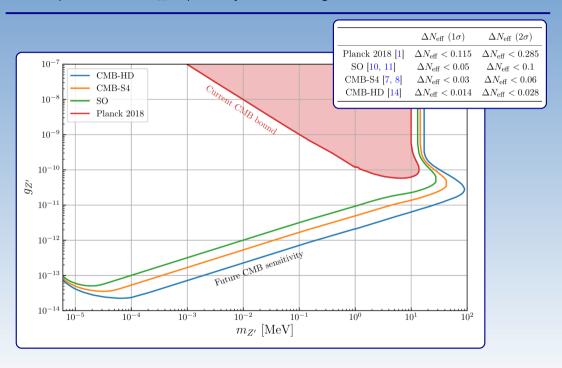
Alternatively, we can solve all Boltzmann equations numerically to obtain the final $\rho_{
u}$



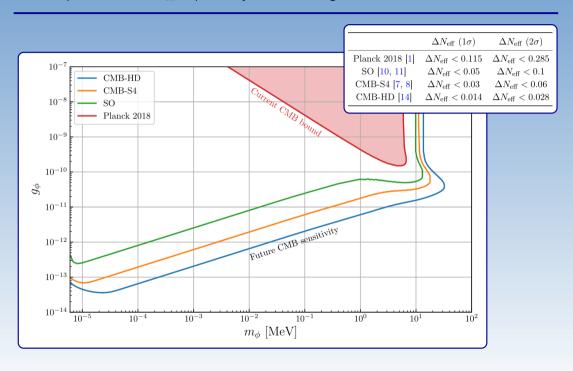
Code publicly available at https://github.com/xunjiexu



Future experiments $\Rightarrow \Delta N_{\rm eff}$ improved by orders of mangitude



Future experiments $\Rightarrow \Delta N_{\rm eff}$ improved by orders of mangitude



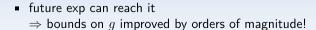
Summary

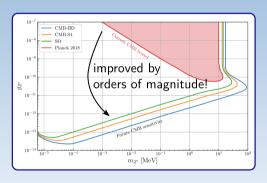
Pedagogical introduction:

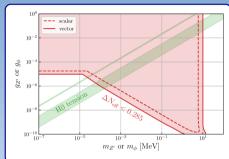
- Why $T_{\gamma}/T_{\nu} = (4/11)^{1/3}$?
- How to estimate $\Delta N_{\rm eff}$ due to new physics?
- \bullet Why $\Delta N_{\rm eff}$ decreases as m creases?

A bit more advanced (what if $n_{\phi/Z'} \rightarrow 0$ at $\nu \text{dec?}$)

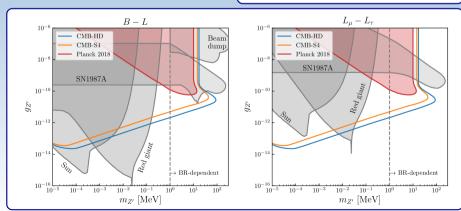
- Dilution-resistant effect
 - Cosmological investment: m = gold
 - $\Delta N_{\rm eff} = 0.118$ (scalar) or 0.242 (vector)
- current exp almost able to probe (Planck 2018, $\Delta N_{\rm eff} < 0.285$)







Specific models



Why is there a nose?

